for Deep Learning Based Speech Recognition

Zhehuai Chen

chenzhehuai@sjtu.edu.cn

SpeechLab, Department of Computer Science and Engineering, Shanghai Jiao Tong University, China

Overview

Problem: Linguistic search takes over 50\% computation in Automatic Speech Recognition (ASR).

Approach:

Reduce the Search Complexity by End-to end Modeling
Accelerate the Search Speed using Parallel Computing

Experiments \& Discussion: 5 times and 50 times speedup respectively; able to combine

From HMM to CTC model

From HMM to CTC: do better in sequential modeling
\(\xrightarrow[\substack{Stronger classifier

\& more data}]{\)| Better sequential |
| :---: |
| modeling |$}$

CTC model: learn the many-to-one function
\square
(a) Traditional нмм
(b) CTC
peaky distribution and concentrated information output

Frame Sync. To Phone Sync.

Frame synchronous Viterbi beam search in CTC

$\mathbf{w}^{*}=\underset{\mathbf{w}}{\operatorname{argmax}}\{P(\mathbf{w}) p(\mathbf{x} \mid \mathbf{w})\}=\underset{\mathbf{w}}{\operatorname{argmax}}\left\{P(\mathbf{w}) p\left(\mathbf{x} \mid \mathbf{l}_{\mathbf{w}}\right)\right\}$
$=\underset{\mathbf{w}}{\mathbf{w}}\left\{P(\mathbf{w}) \max _{\mathbf{1}_{\mathbf{w}}} \frac{P\left(\mathbf{1}_{\mathbf{w}} \mid \mathbf{x}\right)}{P\left(\mathbf{l}_{\mathbf{w}}\right)}\right\}$
$\cong \underset{\mathbf{w}}{\operatorname{argmax}}\left\{P(\mathbf{w}) \max _{\pi: \pi \in L^{\prime}, \mathcal{B}\left(\pi_{1: T}\right)=\mathbf{l}_{\mathbf{w}}} \frac{1}{P\left(\mathbf{l}_{\mathbf{w}}\right)} \prod_{t=1}^{T} y_{\pi_{t}}^{t}\right\}$
$\pi_{1: T}=\left(\pi_{1}, \ldots, \pi_{T}\right)$ is the frame-wise decoding path
l_{w} is phone sequence corresponding to w in dictionary
$l \in L$ and L is the phone se
Frame synchronous to phone synchronous decoding $\mathbf{w}^{*} \cong \underset{\mathbf{w}}{\operatorname{argmax}}\left\{P(\mathbf{w}) \max _{\pi: \pi \in L^{\prime}, \mathcal{B}\left(\pi_{1: T}\right)=\mathbf{l}_{\mathbf{w}}} \frac{1}{P\left(\mathbf{l}_{\mathbf{w}}\right)}\{\right.$

$U=\left\{u: y_{\mathrm{blank}}^{u} \simeq 1\right\}$ is the set of common blank time indexes $J=T-|U| \quad$ is the number of output phone labels

Parallel Viterbi Decoding

Three levels of parallelism: future, history, utterance

Atomic Token Recombination

- Dynamic Load Balancing

Lattice Processing

- Linkedlist \rightarrow vector
- Atomic operations e.g. memory allocation
- Parallel lattice pruning

Experiments

Experimental Setup
Switchboard 300 hours corpus, Cross Entropy \& LF-MMI acoustic models (AM)
30 k -vocabulary, several tri-gram language models (LM)
Baseline: Kaldi 1 -best decoder, Kaldi lattice decoder
GPU Optimization: Fast memcpy; merge GPU kernels by adding grid sync.; etc. (rel. 20\% speedup)

subset	performance$\mathrm{FSD} \mapsto \mathrm{PSD}$		search speed-up			
			FSD \mapsto PSD		FSD \mapsto PSD	
	WER	$\Delta(\%)$	SRTF	$\Delta(\%)$	\#AT	$\Delta(\%)$
swb	18.7	+0.5	0.075	-717	2221	-77
callhm	33.3	+0.0	0.073	-70	2211	-77

Table 2: Speedup of the Proposed Method (beam=14).

system	1-best		+ lattice	
	RTF	Δ	RTF	Δ
CPU	0.16	1.0X	0.27	1.0X
+8 -sequence (1 socket)	-	-	0.15	1.8X
GPU	0.016	10X	0.080	3.3X
+ atomic operation	0.015	11X	0.077	3.5 X
+ dyn. load balancing	0.011	15X	0.075	3.6X
+ lattice prune	-	-	0.028	9.7X
+8 -sequence (MPS)	0.0035	46X	0.0080	34X

- 34 times speedup from parallel computing

Varieties of GPU arch., WFST sizes and acoustic models.

Conclusions

General speedup of linguistic search in speech recognition
End-to-end Modeling

Parallel Computing
Future works:
Inspire more researches in GPU decoding
Combination of Both Techniques

