# SITU SPEECH LAB JARA KANNA KAS Linguistic Search Optimization for Deep Learning Based Speech Recognition

### **Zhehuai Chen**

chenzhehuai@sjtu.edu.cn

SpeechLab, Department of Computer Science and Engineering, Shanghai Jiao Tong University, China

## **Overview**

- **Problem:** Linguistic search takes over 50% computation in Automatic Speech **Recognition (ASR).**
- Approach:
- **Reduce the Search Complexity by End-to**end Modeling
- Accelerate the Search Speed using Parallel Computing
- **Experiments & Discussion: 5 times and 50** times speedup respectively; able to combine



### From HMM to CTC model

From HMM to CTC: do better in sequential modeling



# Frame Sync. To Phone Sync.

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{argmax}} \{ P(\mathbf{w}) p(\mathbf{x} | \mathbf{w}) \} = \underset{\mathbf{w}}{\operatorname{argmax}} \{ P(\mathbf{w}) \underset{\mathbf{l}_{\mathbf{w}}}{\operatorname{max}} \frac{P(\mathbf{l}_{\mathbf{w}} | \mathbf{x})}{P(\mathbf{l}_{\mathbf{w}})} \}$$
$$= \underset{\mathbf{w}}{\operatorname{argmax}} \left\{ P(\mathbf{w}) \underset{\pi:\pi \in L', \mathcal{B}(\pi_{1:T}) = \mathbf{l}_{\mathbf{w}}}{\operatorname{max}} \frac{1}{P(\mathbf{l}_{\mathbf{w}})} \right\}$$

 $\pi_{1:T} = (\pi_1, \ldots, \pi_T)$  is the frame-wise decoding *path*  $l_w$  is phone sequence corresponding to w in dictionary  $l \in L$  and L is the phone set

$$\mathbf{w}^* \cong \operatorname*{argmax}_{\mathbf{w}} \left\{ P(\mathbf{w}) \max_{\substack{\pi:\pi \in L', \mathcal{B}(\pi_{1:T}) = \mathbf{l}_{\mathbf{w}}} \frac{1}{P(\mathbf{l}_{\mathbf{w}})} \right\}$$
$$= \operatorname*{argmax}_{\mathbf{w}} \left\{ P(\mathbf{w}) \max_{\substack{t \notin U \\ \pi':\pi' \in L, \mathcal{B}(\pi'_{1:J}) = \mathbf{l}_{\mathbf{w}}} \frac{1}{P(\mathbf{l}_{\mathbf{w}})} \right\}$$







sil:<s> sil:</s> s:START aa:ɛ s:STOP ih:IT 3:3 sp:e

Table 2: Speedup of the Proposed Method (beam=14).

| system                  | 1-best |          | + lattice |          |
|-------------------------|--------|----------|-----------|----------|
|                         | RTF    | $\Delta$ | RTF       | $\Delta$ |
| CPU                     | 0.16   | 1.0X     | 0.27      | 1.0X     |
| + 8-sequence (1 socket) | -      | -        | 0.15      | 1.8X     |
| GPU                     | 0.016  | 10X      | 0.080     | 3.3X     |
| + atomic operation      | 0.015  | 11X      | 0.077     | 3.5X     |
| + dyn. load balancing   | 0.011  | 15X      | 0.075     | 3.6X     |
| + lattice prune         | -      | -        | 0.028     | 9.7X     |
| + 8-sequence (MPS)      | 0.0035 | 46X      | 0.0080    | 34X      |

34 times speedup from parallel computing



Varieties of GPU arch., WFST sizes and acoustic models.

## Conclusions

General speedup of linguistic search in speech recognition

## **End-to-end Modeling**





| 200 | 250 |
|-----|-----|
|     |     |
|     |     |
|     |     |
| X   |     |
|     |     |
|     | 200 |

